Transverse gluon structure of the proton and the black-disk limit in high-energy scattering

L. Frankfurt (Tel Aviv), M. Strikman (Penn St), Ch. Weiss (JLab), PANIC 05 [Details in: Ann. Rev. Nucl. Part. Sci. (2005), hep-ph/0507286]

ullet Dipole-proton interaction in leading $\log Q^2$

inclusive /diffractive DIS at small \boldsymbol{x}

 Transverse spatial distribution of gluons in proton

t-dependence of hard exclusive vector meson production

→ "Black disk limit" of dipole–proton scattering

Implications for pp/pA at LHC heavy ion collisions cosmic ray physics

Talk by M. Strikman

• Dipole—proton interaction from QCD factorization [Brodsky et al. 94; Frankfurt, Radyushkin, Strikman 96]

- Gluon density well-defined: Leading-twist, DGLAP evolution
- Diffractive DIS: $q\bar{q}g\dots$ dipoles

• Transverse spatial distribution of gluons

$$G(x,Q_{\mathrm{eff}}^2;t) = G(x,Q_{\mathrm{eff}}^2) \times F_g(x,Q_{\mathrm{eff}}^2;t)$$

generalized gluon dist'n

two-gluon formfactor

$$F_g(x, t) = \int d^2 \rho \ e^{-i\vec{\Delta}_{\perp} \cdot \vec{\rho}} \ F_g(x, \rho)$$

transverse spatial distribution of gluons

$$\langle \rho^2 \rangle_g = 4 \frac{\partial}{\partial t} F_g(x, t)$$

gluonic transverse size of nucleon, x-dependent!

– Can be extracted from t-dependence of $\frac{d\sigma}{dt}(\gamma^*p \to Vp)$

• Gluonic transverse size: x-dependence

- Gluonic transverse size increases with decreasing \boldsymbol{x}
- Pion cloud contributes for $x < M_\pi/M_N$ [Strikman, CW 03]
- Transverse size at large x much smaller than proton radius in soft interactions:

$$\langle \rho^2 \rangle (x > 10^{-2}) \ll R_{\text{soft}}^2$$

"Two-scale picture"

Optics of dipole—proton scattering

[Frankfurt, Guzey, Strikman 02; Frankfurt, Strikman, CW 03]

$$A^{dp}(s, t) = \frac{is}{4\pi} \int d^2b \, e^{-i\vec{\Delta}_{\perp} \cdot \vec{b}} \, \Gamma^{dp}(s, b)$$

dp elastic amplitude in impact parameter representation $(t=-\Delta_\perp^2)$

$$\sigma_{\rm el}(s) \sim |A^{dp}|^2 = \int d^2b |\Gamma^{dp}(s,b)|^2$$

$$\sigma_{\mathrm{tot}}(s)$$
 \sim Im A^{dp} = $\int\!d^2b$ 2 Re $\Gamma^{dp}(s,b)$

$$\sigma_{\rm in}(s) \qquad = \int d^2b \left[1 - |1 - \Gamma^{dp}(s, b)|^2 \right]$$

Probability of inelast interaction

– "Black disk" limit: $\Gamma^{dp} \to 1$ Unit probability for inelastic interaction

Black disk limit (BDL) in dipole–proton scattering

0.5

b (fm)

- Construct $\Gamma^{dp}(b)$ from dp cross section in leading $\log Q^2$ approximation
- Strong rise of gluon density at small \boldsymbol{x} (DGLAP evolution)!
- BDL reached in interaction of small dipole at small xand central impact parameters
- Color factor: Cross section for gg dipole larger than for $q\bar{q}$ by factor 9/4

• Black-disk limit: Space-time picture

[Frankfurt, Strikman, CW 03]

Here: Dipole in projectile proton (momentum fraction x_1)

• Implications of BDL for high–energy pp/pA collisions $[\to \mathsf{Talk} \; \mathsf{by} \; \mathsf{M.} \; \mathsf{Strikman}]$

- BDL reached in interactions of leading partons ($x\sim 0.1$) in central pp/pA collisions at LHC
- Leading partons acquire large transverse momentum $\sim p_{\perp,\mathrm{BDL}}$, increased energy loss
- Qualitative changes in hadronic final-state: Increased p_T of forward hadrons Reduced multiplicities, etc.
- ... Can be studied by selecting central pp events through trigger on hard QCD process (dijet)

Summary

• Dipole–proton cross section from QCD factorization of inclusive DIS increases strongly at small x (DGLAP evolution)

$$\sigma^{dp} \propto d^2 x G(x, Q_{\text{eff}}^2 \sim d^{-2})$$

- ullet Transverse spatial distribution of gluons from t-dependence of hard exclusive processes
- Black-disk limit (BDL) reached in central dipole-proton collisions at LHC energies

$$\Gamma^{dp}(b) \to 1.$$

... New regime of strong interactions ... can be probed at LHC!